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Abstract: Perpendicular distance sampling (PDS) is a fast probability-proportional-to-size method for inventory of downed
wood. However, previous development of PDS had limited the method to estimating only one variable (such as volume
per hectare, or surface area per hectare) at a time. Here, we develop a general design-unbiased estimator for PDS. We
then show how that estimator can be used to develop simple measurement protocols that allow simultaneous, unbiased es-
timation of multiple downed wood variables, including logs per hectare, length of logs per hectare, surface area or area
coverage per hectare, and volume per hectare.

Résumé : L’échantillonnage à distance perpendiculaire (EDP) est une méthode rapide pour faire l’inventaire du bois au
sol dont la probabilité est proportionnelle à la dimension. Cependant, cette méthode d’EDP a jusqu’à maintenant été dével-
oppée pour estimer une seule variable (telle que le volume à l’hectare ou la superficie à l’hectare) à la fois. Ici, nous dé-
veloppons un estimateur non biaisé et général pour l’EDP. Nous montrons ensuite comment cet estimateur peut être utilisé
pour développer des protocoles simples de mesure qui permettent d’obtenir simultanément une estimation non biaisée de
plusieurs variables du bois au sol, incluant le nombre de billes à l’hectare, la longueur des billes à l’hectare, la superficie
ou la surface couverte à l’hectare et le volume à l’hectare.

[Traduit par la Rédaction]

Introduction

The past two decades have seen dramatic growth in the
awareness and understanding of the role of dead downed
wood (also known as coarse woody material (CWM) and
coarse woody debris (CWD); hereinafter refer to as CWM)
in a variety of ecosystem states and processes (Harmon et
al. 1986; Hagan and Grove 1999; Ståhl et al. 2001) includ-
ing wildlife habitat, carbon and nutrient sinks and cycles,
and wildland fire behavior. This growing interest has been
coupled with increased attention to efficient methods for
sampling CWD.

One promising set of techniques is perpendicular distance
sampling (PDS; Williams and Gove 2003). PDS is a probabil-
ity proportional to size sampling (PPS) technique; in its origi-
nal development, sampling was done with probability
proportional to volume. As a result few, if any, actual meas-
urements of log size are needed to obtain a design-unbiased
estimate of the volume of CWM (whether per unit area or to-
tal for a tract). The result is a sampling method that is nearly
optimal in terms of its theoretical variance (Williams and
Gove 2003) and very fast. Williams et al. (2005a) generalized
the method for sampling with probability proportional to

CWM surface area; Williams et al. (2005b) present solutions
to practical problems including correction for slope and for
curved, forked, or leaning CWM. Simulation studies (Wil-
liams and Gove 2003; Williams et al. 2005a) and field trials2

show that PDS can provide substantial improvements in effi-
ciency over traditional methods such as line intersect sam-
pling (e.g., Brown 1974).

An unfortunate limitation of the previously developed
variants of PDS is that only one CWM variable can be esti-
mated at a time. For example, in PDS with probability pro-
portional to volume a simple count of tallied logs multiplied
by a volume factor gives an estimate of volume per hectare.
However, without additional and seemingly difficult meas-
urements no estimate can be provided for number of logs
per hectare or for other CWM variables (Williams et al.
2005a). The situation is similar to that in the most familiar
PPS technique in forestry, horizontal point sampling. In
horizontal point sampling, a count of tallied trees at a point
multiplied by the basal area factor gives an estimate of basal
area per hectare. To expand other tree attributes to a per
hectare basis, one must also measure the basal area of the
trees (or diameter at breast height, which is converted to
basal area under an assumption of circularity, giving a
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nearly exact approximation for almost all trees; Grosen-
baugh 1958). A similarly direct attack on the problem in
PDS would require, for example, accurate measurement of
the volume of downed logs that are tallied. This task is a
forbidding one considering the variety of irregular shapes
that downed, decaying logs may take. Exacting measure-
ment of the volume of irregular logs would eliminate any
practical advantages, especially in terms of speed, that PDS
might have.

Here, we solve the problem of obtaining design-unbiased
estimates of multiple CWM variables in PDS using simple,
familiar, and quick measurements. First, we develop a gen-
eral design-unbiased estimator that takes advantage of the
deep connection between PDS and importance sampling
(Gregoire et al. 1987). We then use the estimator to develop
specific measurement techniques and estimators for CWM
variables including logs per hectare, length per hectare, sur-
face area coverage, and log volume and biomass per hectare
when PDS is used with probability proportional to volume
or probability proportional to surface area.

Overview of PDS

We begin with a very brief review of PDS for the conven-
ience of readers who may not be familiar with this new
method and to establish notation for later sections. This re-
view is not exhaustive; for greater detail, readers may wish
to consult Williams and Gove (2003) and Williams et al.
(2005a, 2005b).

Suppose we are interested in the total of some attribute of
pieces of CWM that lie within a defined tract, A, that has
area |A| (ha). For example, we might be interested in V, the
total volume of CWM (m3), or equivalently the volume per
unit area V / |A| (m3/ha). There are N logs lying in A, but we
do not know N. We will sample the population by establish-
ing one or more sample points uniformly at random within
A. Without loss of generality, we initially consider a single
sample point.

From the sample point, which plays the same ‘‘plot cen-
ter’’ role as a sample point in horizontal point sampling, we
scan for all logs that may qualify to be tallied. First, we de-
termine whether a log has a ‘‘perpendicular point,’’ that is, a
point on the log (or the axis connecting the ends of the log;
Williams et al. 2005b) where the line of sight from the sam-
ple point is perpendicular to the log axis. If not, the log is
disregarded. If so, then the distance from the sample point
to the perpendicular point is compared with a critical or lim-
iting distance that depends on some attribute of the log
taken at the perpendicular point. Specifically, let Di be the
distance to the perpendicular point on the ith log. The log
will be tallied if Di £ DL where

½1� DL ¼ kxiðhÞ

Here, xi(h) is the value of some attribute x on the ith log
evaluated at the perpendicular point, which is located at a
distance h (m) from the basal end of the log. Let the total
length of the ith log be Hi. The inclusion zone for the ith
log is the zone in which sample points can fall and the log
will be tallied. Let the inclusion zone be ai and its area be
denoted as |ai| (m2). Then

½2� jaij ¼ 2

Z Hi

0

kxiðhÞdh

The field procedure and corresponding inclusion zones are
illustrated in Fig. 1. An expanded view of the inclusion
zone of a single log is shown in Fig. 2.

The design of a PDS method involves two choices. The

Fig. 1. Overview of perpendicular distance sampling (PDS). (a) A
sample point (*) has fallen in the vicinity of four logs. The obser-
ver sights on the perpendicular point of each log; the perpendicular
line of sight is shown as a broken line. Note that there is no per-
pendicular point for log 4 because of its position and orientation;
log 4 is ignored. (b) ‘‘Inclusion zones’’ for the four logs. In this
case, because the sample point has fallen within the inclusion zones
of logs 1 and 2, they are tallied; logs 3 and 4 are not.

Fig. 2. Expanded view of the inclusion zone for an individual log
in perpendicular distance sampling (PDS). Hi is the length of the ith
log axis in the horizontal plane and xi(h) is an attribute of the ith
log taken perpendicular to the log axis at point h. The choice of the
attribute x determines the ‘‘size’’ proportional to which PDS sam-
ples. The choice of the constant k determines the effective ‘‘factor’’
(e.g., volume factor, area factor) in PDS.
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first is the selection of an attribute to use as xi(h). PDS is a
PPS method; the choice of xi(h) determines the meaning of
‘‘size.’’ For example, if xi(h) is the cross-sectional area of
the log xa,i(h), then PDS samples are taken with probability
proportional to the volume vi of logs since

vi ¼
Z Hi

0

xa;iðhÞdh

so

jaij ¼ 2
RHi

0
kxa;iðhÞdh

¼ 2kvi

The second choice, the value of k, determines the effective
‘‘volume factor’’ of the sampling approach. The probability
that the ith log will be tallied, or �i in a standard Horvitz–
Thompson estimator (Horvitz and Thompson 1952), is
�i ¼ jaij=½ð10 000 m2=haÞjAj�. Let �i be an indicator variable;
�i is equal to 1 if the ith log is tallied and �i is equal to 0
otherwise. The corresponding estimator for volume per hec-
tare is

bV
jAj ¼ 1

jAj
XN
i¼1

�i
vi

�i

¼ 1

jAj
XN
i¼1

�i
vi
2kvi

10 000jAj

¼
XN
i¼1

�i
10 000

2k

¼ 10 000n

2k

where n is the number of logs tallied and 10 000 / 2k is the
volume factor (Williams and Gove 2003).

Development of PDS for sampling surface area or ground
area coverage is similarly straightforward. When xi(h) is log
circumference, PDS samples with probability proportional to
surface area (or almost exactly so; Williams et al. 2005a).
When xi(h) is the width of the log perpendicular to the log
axis and parallel to the horizontal plane, PDS samples with
probability exactly proportional to horizontal ground surface
coverage.

We emphasize that in the original development of PDS,
few actual log measurements were needed because it was
only necessary to determine whether a log was close enough
to the sample point to be tallied. In practice, the ability of
experienced foresters to estimate diameters and distances
coupled with a simple chart allows rapid and accurate deter-
mination of the inclusion or exclusion of most logs without
direct measurement. Measurement is only needed when a
log is ‘‘borderline.’’ The situation is directly analogous to
horizontal point sampling when basal area is the variable of
interest (although a chart is used in PDS rather than a phys-
ical gauge of some sort). The result is an extremely rapid
field technique.2

PDS (and PPS sampling in general) provides a ‘‘size fac-
tor’’ because the inclusion zone area is proportional to size,
so that size cancels out in the standard Horvitz–Thompson

estimator (Horvitz and Thompson 1952) when size is also
in the numerator. However, when other variables are in-
serted in the numerator, size does not necessarily cancel
out. To use the Horvitz–Thompson estimator for other varia-
bles, we would have to measure the size of downed logs ac-
curately, where size might be volume, surface area, or
ground surface coverage. This task can be difficult, if not
impossible, for real logs in the field. We need another ap-
proach.

General design-unbiased estimator

As an alternative to the Horvitz–Thompson estimator
(Horvitz and Thompson 1952) we consider an estimator mo-
tivated by the connection between PDS and importance sam-
pling (Gregoire et al. 1987). PDS is a direct physical
implementation of importance sampling via von Neumann’s
(1951) acceptance–rejection method, in which A is the re-
gion within which an initial uniform random deviate is gen-
erated. For the purpose of considering the ith log in the
population, let us assign this uniform random deviate Carte-
sian coordinates that depend on the position and orientation
of the log. The first Cartesian coordinate is h, and the sec-
ond is Di. Let the origin [0,0] be at the basal end of the log
axis, and let the distal end fall at [Hi, 0]. The deviate is re-
jected if it falls outside ai, the shape of which is governed
by the value along the h-axis of xi(h). If h < 0 or h > Hi
then the deviate will certainly be rejected because the log
does not extend into this region (i.e., xi(h) = 0). But, if 0 £
h £ Hi then the coordinate Di comes into play. The deviate
will be accepted if and only if –kxi(h) £ Di £ kxi(h) and re-
jected otherwise. In other words, 2kxi(h) is an auxiliary
function for an importance sample of h from the ith log.

This connection between PDS and importance sampling
motivates an alternative estimator, which we develop here
as a conjecture and then prove below. Let Y ¼

PN
i¼1yi

where yi ¼
RHi

0
xiðhÞdh be an attribute of a population of N

logs in A. We sample using PDS with DL = 2kxi(h), which
provides a straightforward estimate of Y or of Y / |A|, as
shown above. But suppose we are interested in some other
quantity Z ¼

PN
i¼1zi where zi ¼

RHi

0
fiðhÞdh. We will show

that a general design-unbiased estimator of Z / |A| is

½3�
bZ
jAj ¼

10 000

2k

XN
i¼1

�i
fiðhÞ
xiðhÞ

where �i = 1 if log i is sampled and �i = 0 otherwise, as be-
fore.

Two equally valid proofs of the design-unbiasedness of
the estimator in eq. 3 are available. Here, we take up the
proof from a conventional probability sampling perspective.
A proof based on a Monte Carlo approach, which is less fa-
miliar in forestry literature, is presented in Appendix A.

To prove that eq. 3 is design-unbiased, we first consider
the distribution of h given that a log has been sampled. Con-
sider inclusion zones such as those in Fig. 2. If the sample
point is located uniformly at random within the inclusion
zone then h is not selected uniformly at random on the inter-
val 0 £ h £ Hi, but has an unequal probability distribution.
The cumulative distribution function is
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½4�
Pðh < h0Þ ¼

2k
R h0

0
xiðhÞdh

2k
RHi

0
xiðhÞdh

¼
2k

R h0

0
xiðhÞdh
yi

Differentiating with respect to h’, we obtain the probability
density function

½5�

pðhÞ ¼ d

dh0
Pðh < h0Þ

¼ 1

yi

d

dh0

Z h0

0

xiðhÞdh

¼ xiðhÞ
yi

The next step in the proof is to calculate the expected
value of the joint random variable ri = �ifi(h) / xi(h). Now,
with probability (1 – �i), ri = 0. So we may write

½6�
E½ri� ¼ E½rij�i ¼ 1��i

¼ �iEh

fiðhÞ
xiðhÞ

2
4

3
5

Now, conditional on the event that the ith log is sampled,
h is sampled with probability proportional to xi(h) (eq. 5).
So we may rewrite eq. 6 as

½7�
E½ri� ¼ �i

RHi

0
ri
xiðhÞ
yi

dh

¼ �i

yi

Z Hi

0

rixiðhÞdh

Note that if the ith log is sampled then ri = fi(h) / xi(h). So
we may further simplify

E½ri� ¼ �i

yi

Z Hi

0

fiðhÞdh

¼ �izi

yi

But, accounting for units,

�i ¼ jaij
10 000jAj

¼ 2kyi

10 000jAj

so that

½8� E½ri� ¼
2k

10 000jAj zi

Substituting eq. 8 into eq. 3, we obtain

½9�

E½bZ �
jAj ¼ 10 000

2k

XN
i¼1

2k

10 000jAj zi

¼ 1

jAj
XN
i¼1

zi

¼ Z

jAj

which proves the design-unbiasedness of the estimator in
eq. 3.

Sampling with probability proportional to
volume

It may not be intuitively obvious that the general estimator
in eq. 3 leads to field procedures and specific estimators
that are simple and practical. To arrive at such procedures
and estimators, let us first consider the case in which PDS
is used with probability proportional to volume, so that
xi(h) = xa,i(h) is the cross-sectional area of the log taken
perpendicular to the horizontal projection of the log axis
(Williams and Gove 2003; Williams et al. 2005b). We
will consider several candidate variables (Z or zi) in turn.
For simplicity in presenting the estimators, we will use the
‘‘volume factor’’ of the sample, Fv = 10 000 / 2k, which has
units m3/ha.

Logs per hectare

Z = N when estimating logs per hectare, so zi = 1. A sim-
ple approach uses fi(h) = 1 / Hi, since

RHi

0
1=Hi dh ¼ 1. The

summand in the estimator, fi(h) / xi(h), is simply
1 / [xa,i(h)Hi]. So the estimator for logs per hectare is

bN
jAj ¼ Fv

X
i

1

xa;iðhÞHi

Note that for convenience, we have dropped the �i term,
so the summation is only over the logs that are actually tal-
lied at the sample point. The log length (m) and the log
cross-sectional area at the perpendicular point (m2) are the
required measurements for design-unbiased estimation of
logs per hectare.

Length (m) per hectare

L ¼
PN

i¼1Hi is naturally estimated by line intersect sam-
pling (cf. Brown 1974; de Vries 1986) as a constant times
the number of log intersections. In our context, zi = Hi and
fi(h) = 1, since

RHi

0
dh ¼ Hi. The summand in the estimator

fi(h) / xi(h) is 1 / xa,i(h). So the estimator for length of logs
per hectare is

bL
jAj ¼ Fv

X
i

1

xa;iðhÞ

The log cross-sectional area at the perpendicular point
(m2) is the only required measurement for design-unbiased
estimation of log length per hectare.
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Surface area (m2) per hectare
Up to a correction factor for taper that is negligible in

practice and ignoring the log ends, the surface area, sa,i, of
a log is sa;i ¼

RHi

0
ciðhÞdh, where ci(h) is the circumference

of the log or the relevant portion of the circumference (Wil-
liams et al. 2005a). For example, if the surface area not in
contact with the ground is of interest then the relevant por-
tion of the circumference is that part not in contact with the
ground. Here, fi(h) = ci(h), with ci(h) measured in metres,
and the summand in the estimator fi(h) / xi(h) is ci(h) / xa,i(h).
So the estimator for surface area of logs per hectare is

bS
jAj ¼ Fv

X
i

ciðhÞ
xa;iðhÞ

The best method of measuring the ratio ci(h) / xa,i(h) will de-
pend on the application. However, one special case deserves
further mention: if the log is approximated by a circular
cross-section

ciðhÞ
xa;iðhÞ

¼ �diðhÞ=100
�=40 000diðhÞ2

¼ 400

diðhÞ

where di(h) is the log diameter at the perpendicular point
(cm).

Ground coverage (m2) per hectare
The ground coverage, gi, of a log (projected onto the sur-

face) is gi ¼
RHi

0
wiðhÞ=100dh, where wi(h) is the ground-

width of the log (cm) measured perpendicular to the log
axis and parallel to the horizontal plane. Here, fi(h) =
wi(h) / 100 and the summand in the estimator fi(h) / xi(h) is
wi(h) / 100xa,i(h). So the estimator for ground coverage of
logs per hectare is

bG
jAj ¼ Fv

X
i

wiðhÞ=100
xa;iðhÞ

Again, the best method of measuring the ratio
[wi(h) / 100] / [xa,i(h)] will depend on the application and
may even depend on the characteristics of the log. If the
log is well-approximated by an elliptical cross-section

wiðhÞ=100
xa;iðhÞ

¼ wiðhÞ=100
�=40 000wiðhÞdv;iðhÞ

¼ 400

�dv;iðhÞ

where dv,i(h) is the log ‘‘diameter’’ measured in the ‘‘vertical
direction’’ (cm). If the log is approximately circular, then
wi(h)& dv,i(h)& di(h), so

wiðhÞ
xa;iðhÞ

¼ 400

�diðhÞ

Finally, for highly irregular logs, note that the fraction
[wi(h) / 100] / [xa,i(h)] is just the reciprocal of the mean depth
of the log (m), measured along wi(h). For heavily decayed

logs, this measurement can be obtained by systematic or
random sampling across the log, using a sharpened metal
rod as a probe.

Log biomass (kg) per hectare
The biomass, bi, of a log is bi ¼

RHi

0
�iðhÞxa;iðhÞdh, where

�i(h) is the mean dry density (kg/m3) of an infinitesimal
‘‘cookie’’ perpendicular to the log axis at h. For practical
purposes, the fraction [fi(h) / xi(h)] = �i(h) will be well-
approximated by the dry mass to volume ratio (kg/m3) of
a reasonably finitely thin sample cookie cut at h. The cor-
responding estimator is

bB
jAj ¼ Fv

X
i

�iðhÞ

If such a cookie is too large for transportation or drying,
estimation of the dry mass to volume ratio can be easily
turned into a straightforward subsampling problem. For
example, plugs might be centered on points on the cookie
surface using simple random, systematic, or stratified
sampling and removed with a tenon cutter for later analysis
(including volume and dry mass determination) in the
laboratory. The appropriate estimator for obtaining �i(h)
from the plug samples would depend on the specific
sampling approach used.

Sampling with probability proportional to
ground coverage

Sampling with probability proportional to surface area
(Williams et al. 2005a) or ground coverage changes the var-
iable in the denominator of the estimator. In this section, we
will present the estimators associated with a range of varia-
bles when ground coverage is the ‘‘size’’ of the log. Com-
parison of the estimators in this section with those in the
previous section should amply illustrate the procedure for
constructing estimators when other variables (e.g., surface
area) are used as log size.

Sampling with probability proportional to ground cover-
age is of special interest in practical sampling. The only vari-
able needed to check whether ‘‘borderline’’ logs are
included in the sample is the horizontal ‘‘diameter,’’ wi(h),
which can almost always be measured simply and exactly
using calipers. Furthermore, sampling with probability pro-
portional to surface area (DL ! wi(h)) avoids the problem
of ‘‘runaway’’ limiting distances that can occur in sampling
with probability proportional to volume (DL ! xa,i(h) !
di(h)2).

As in the previous section, we simplify the presentation of
the estimators by using the ‘‘ground coverage factor,’’
FG = 10 000 / 2k, which has units m2/ha.

Logs per hectare
As before, Z = N when estimating logs per hectare, so zi =

1 and fi(h) = 1 / Hi. The summand in the estimator,
fi(h) / xi(h), is now 100 / [wi(h)Hi] where the 100 in the
numerator converts wi(h) from centimetres to metres. So the
estimator for logs per hectare is
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bN
jAj ¼ FG

X
i

100

wiðhÞHi

The log length (m) and the log ground-width at the
perpendicular point (cm), which are both reasonably easy to
measure accurately, are the required measurements for
design-unbiased estimation of logs per hectare.

Length (m) per hectare

Once again, zi = Hi and fi(h) = 1 since
RHi

0
dh ¼ Hi. The

summand in the estimator, accounting for units, is
[fi(h) / xi(h)] = [100 / wi(h)]. So the estimator for length of
logs per hectare is

bL
jAj ¼ FG

X
i

1

wiðhÞ

Only the ground-width is needed for design-unbiased esti-
mation of log length per hectare.

Surface area (m2) per hectare
Surface area is sa;i �

RHi

0
ciðhÞdh, where ci(h) is the rele-

vant portion of the circumference of the log (m). Now the
summand in the estimator, accounting for wi(h) in centi-
metres, is [fi(h) / xi(h)] = [100ci(h) / wi(h)], so the estimator
for surface area of logs per hectare is

bS
jAj ¼ FG

X
i

100ciðhÞ
wiðhÞ

Again, the best method of measuring the ratio
[ci(h)] / [wi(h)] will depend on the application. But if the log
is approximated by a circular cross-section, so that di(h) =
wi(h), then {[ci(h)] / [wi(h)]} = {[rwi(h) / 100] / [wi(h)]} =
p / 100, and the estimator becomes

bS
jAj ¼ n�FG

where n is the number of logs tallied.

Volume (m3) per hectare
The volume, Vi, of a log is, as before, Vi ¼

RHi

0
xa;iðhÞdh.

Now, fi(h) = xa,i(h) and the summand in the estimator,
fi(h) / xi(h), is 100[xa,i(h) / wi(h)]. So the estimator for volume
of logs per hectare is

bV
jAj ¼ FG

X
i

100xa;iðhÞ
wiðhÞ

Again, the best method of measuring the ratio xa,i(h) / wi(h)
will depend on the application and may depend on the char-
acteristics of the log. If the log is well-approximated by an
elliptical cross-section, with one axis oriented vertically and
the other horizontally, then

100
xa;iðhÞ
wiðhÞ

¼ 100�=40 000wðhÞdv;iðhÞ
wiðhÞ

¼ �dv;iðhÞ
400

If the log is approximately circular, such that wi(h)&
dv,i(h)& di(h), then

100xa;iðhÞ
wiðhÞ

¼ �wiðhÞ
400

Finally, for highly irregular logs, note that the fraction
xa,i(h) / [wi(h) / 100] is just the mean depth of the log (m),
measured along wi(h). As suggested before, for heavily de-
cayed logs, this measurement can be obtained by systematic
or random sampling using a sharpened metal rod as a probe.

Log biomass (kg) per hectare
The biomass, bi, of a log is bi ¼

RHi

0
�iðhÞxa;iðhÞdh, where

�i(h) is the mean dry density (kg/m3) of an infinitesimal
cookie perpendicular to the log axis at h. The fraction
[fi(h) / xi(h)] = {[�i(h)xa,i(h)] / [wi(h) / 100]} can still be well-
approximated by measurements on a finitely thin sample
cookie cut at h, though now not only the density, but also
the dimensions of the cookie are needed. The value of wi(h)
can be measured in the field or on the cookie in the lab if
the orientation of the cookie is marked in the field. The
cross-section xa,i(h) can be measured accurately using a
planimeter or by scanning. As before, if such a cookie is
too large for transportation or drying, estimation of the dry
mass to volume ratio can be easily turned into a straightfor-
ward subsampling problem. The same is true of xa,i(h), for
which design-unbiased procedures and accompanying esti-
mators are presented by Gregoire and Valentine (1995).

Practical issues
The estimators above are for single sample points. In

practice, of course, one would ordinarily distribute a number
of sample points in the tract A. If m sample points are dis-
tributed uniformly in A by simple random or systematic
sampling, then the sample mean of the m estimates is a de-
sign-unbiased estimate of the population mean. If the points
are distributed by simple random sampling then the sample
variance, s2, is a design-unbiased estimate of the variance
of the possible sample points and the squared standard error
s2 / m is a design-unbiased estimate of the variance of the
sample mean. These familiar results can be derived in
straightforward fashion from either finite-population
Horvitz–Thompson theory (Horvitz and Thompson 1952) or
from an infinite-population Monte Carlo approach (Eriksson
1995; Valentine et al. 2001; Williams 2001).

In the field, it is common to encounter logs that are
sloped (either because they are elevated above the terrain or
because the terrain itself is sloping). Forked and crooked
logs also occur. We emphasize that the principles and esti-
mators developed above remain valid in all these situations,
but one must be mindful of the geometry of measurement in
PDS. In PDS, the log axis is always in the horizontal plane
and connects the projections of the two ends of the log onto
that plane by a straight line. For forked logs, one of the
forks (typically the one with apex farthest from the basal
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end of the log) establishes one end. Hi is always measured
along this axis and will not equal the physical length of the
log when the log is sloping or crooked. All other measure-
ments (such as h, xa,i(h), ci(h), and wi(h)) are taken perpen-
dicular to this log axis. For sloping logs, this means these
measurements remain in a vertical plane and will not be per-
pendicular to the ‘‘physical’’ axis of the log. For example,
cookies to be cut for biomass estimation must be cut in a
strictly vertical direction and may slice ‘‘on the bias’’ across
the pith of the log. For forked logs, measurements are accu-
mulated among branches in the vertical plane defined by the
line of sight perpendicular to the log. For example, wi(h)
might have to be measured as the sum of the ground-width
of several forks or branches. Although the estimators pre-
sented here are more general, the principles outlined in Wil-
liams et al. (2005b) still apply.

Some variables (especially xa,i(h) and �i(h)) may be
inherently difficult to measure accurately in the field. The
impact of this inaccuracy depends on whether these
variables appear in the numerator or the denominator of the
estimator. If a variable appears only in the numerator and it
can be approximated using a design-unbiased sampling
method (as is true for xa,i(h) using cookies; Gregoire and
Valentine 1995), there will be an increase in variance but
no bias. Where such a variable is in the denominator and a
design-unbiased estimator is not available or a geometric
approximation (e.g., the assumption of an elliptical cross-
section) is used, some bias will be present. It may still be
possible to correct this bias using an appropriate second-
order sampling approach, but bias correction is often
counter-productive, owing to the resulting increase in
variance (Efron and Tibshirani 1993). We must emphasize
that this is a limitation of all known sampling methods for
CWM, including fixed-area plots and line intersect
sampling. What PDS does avoid with certainty is any bias
associated with the assumption of particular taper rates (of
diameter, area, volume, or density) along the stem (e.g.,
Bebber and Thomas 2003).

Finally, we must point out that while the estimators given
here are design-unbiased, that does not necessarily mean
they will have small variance. For example, the sampling
variance for logs per hectare, when using PDS with
probability proportional to volume, will almost certainly be
very large. (The presence not only of Hi, which may vary
considerably from log to log, but also of the random
variable xa,i(h), in the denominator of the estimator means
these estimates will almost certainly have high variability.)
The situation is analogous to that of horizontal point
sampling for standing trees; the variance of HPS for basal
area is nearly optimal, but the variance for trees per hectare
can be atrocious. The solution suggested by Williams et al.
(2005a), using PDS to estimate ‘‘difficult’’ variables such as
volume or surface area and using a simple count of logs on
a small, fixed-area plot to estimate number of logs per
hectare, may remain advantageous even when PDS-based
design-unbiased estimators for logs per hectare are available.
What PDS offers is the ability to sample with probability
proportional (or very nearly proportional) to the variable
that is of most interest to a particular investigation; that
advantage need not be sacrificed simply because more than
one variable is of interest.

Conclusions
Previous development of PDS had only allowed for esti-

mating one variable at a time. By focusing on the deep con-
nection between PDS and importance sampling, a general
design-unbiased estimator can be developed. The resulting
protocols allow simultaneous estimation of multiple CWD
variables. In addition to the count of tallied logs, these pro-
tocols require only fairly simple and familiar measurements
(such as the length of tallied logs or one or more diameter
measurements taken at the ‘‘perpendicular point’’ on each
tallied log). These results should facilitate the extension of
PDS from relatively simple inventories in which only a sin-
gle variable (such as volume per hectare) is important to
more general inventory contexts in which many variables
may be of interest.
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Appendix A
The design-unbiasedness of the general estimator (eq. 3)

can be shown quite simply from a Monte Carlo integration
perspective (Valentine et al. 2001; Williams 2001). In this
approach, we consider that the attribute of interest for the
ith log, zi, is spread out over the two-dimensional inclusion
zone, ai, of the log. Any attribute that can be expressed as a
Lebesgue integral can be zi

zi ¼
Z
Hi

fiðhÞdh

where Hi is the axis of the ith log and fi(h)dh is the amount
of the attribute located in an infinitesimally thin ‘‘cookie’’
of width dh centered at point h on that axis. Hi, fi(h), zi,
and ai are considered fixed for all logs in the population,
which is located within a defined tract, A, that has area |A|
(ha).

Denote the sliver of ai, having vanishingly small width
�H and crossing perpendicularly at h on Hi, as ai(h). The
length of this sliver perpendicular to the axis is 2kxi(h), as
described by the protocol for perpendicular distance sam-
pling (PDS). We spread the attribute zi within ai, such that
the attribute density within ai(h) is

�iðhÞ ¼ lim
�H!0

fiðhÞ�H

2kxiðhÞ�H

¼ fiðhÞ
2kxiðhÞ

at any and all points in ai(h). For all points outside ai, �i(h)
is defined as zero. Note that the attribute density �i(h) is not
to be confused with physical density.

Now, suppose we select a sample point s [ A, with prob-
ability density p(s). Denote hi(s) as the value of h for the ith
log when the sample point is s. (When no perpendicular
point exists, the definition of hi(s) is irrelevant.) Then, an

unbiased estimator of Z ¼
XN

i¼1
zi is

bZ ¼
X

i:s2ai½hiðsÞ�

�i½hiðsÞ�
pðsÞ

If s is selected uniformly at random within A then p(s) =
1 / |A| and

bZ ¼ jAj
2k

X
i:s2ai½hiðsÞ�

fi½hiðsÞ�
xi½hiðsÞ�

Note that in the above expression, |A| and |ai| are assumed
to be expressed in the same units. If that were not the case
(e.g., |A| is in hectares and |ai| is in square metres), an ap-
propriate unit conversion would be needed. The correspond-
ing estimator of Z per unit area is

bZ
jAj ¼

1

2k

X
i:s2ai½hiðsÞ�

fi½hiðsÞ�
xi½hiðsÞ�

In the special case in which zi ¼
R
Hi
xiðhÞdh, for example

when zi is volume and xi(h) is cross-sectional area,

bZ
jAj ¼ 1

2k

X
i:s2ai½hiðsÞ�

xi½hiðsÞ�
xi½hiðsÞ�

¼ nðsÞ
2k

where n(s) is the number of logs tallied from point s. This is
the estimator developed by Williams and Gove (2003).

The proof of design-unbiasedness is straightforward. By
our Monte Carlo design

�iðsÞ ¼
�i½hiðsÞ� s 2 ai;

0 s 2= ai

�

Hence,

zi ¼
Z
s2ai

�iðsÞds

¼
Z
s2A

�iðsÞds

Therefore, taking p(s) = 1 / |A| and assuming no slopover

E
bZ
jAj

2
4

3
5 ¼

Z
s2A

pðsÞ
XN
i¼1

�iðsÞds

¼ 1

jAj

Z
s2A

XN
i¼1

�iðsÞds

¼ 1

jAj
XN
i¼1

zi

¼ Z

jAj
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